SambaNova
SambaNova's Sambaverse and Sambastudio are platforms for running your own open-source models
This example goes over how to use LangChain to interact with SambaNova models
Sambaverse
Sambaverse allows you to interact with multiple open-source models. You can view the list of available models and interact with them in the playground. Please note that Sambaverse's free offering is performance-limited. Companies that are ready to evaluate the production tokens-per-second performance, volume throughput, and 10x lower total cost of ownership (TCO) of SambaNova should contact us for a non-limited evaluation instance.
An API key is required to access Sambaverse models. To get a key, create an account at sambaverse.sambanova.ai
The sseclient-py package is required to run streaming predictions
%pip install --quiet sseclient-py==1.8.0
Register your API key as an environment variable:
import os
sambaverse_api_key = "<Your sambaverse API key>"
# Set the environment variables
os.environ["SAMBAVERSE_API_KEY"] = sambaverse_api_key
Call Sambaverse models directly from LangChain!
from langchain_community.llms.sambanova import Sambaverse
llm = Sambaverse(
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
streaming=False,
model_kwargs={
"do_sample": True,
"max_tokens_to_generate": 1000,
"temperature": 0.01,
"process_prompt": True,
"select_expert": "llama-2-7b-chat-hf",
# "stop_sequences": '\"sequence1\",\"sequence2\"',
# "repetition_penalty": 1.0,
# "top_k": 50,
# "top_p": 1.0
},
)
print(llm.invoke("Why should I use open source models?"))
API Reference:
# Streaming response
from langchain_community.llms.sambanova import Sambaverse
llm = Sambaverse(
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
streaming=True,
model_kwargs={
"do_sample": True,
"max_tokens_to_generate": 1000,
"temperature": 0.01,
"process_prompt": True,
"select_expert": "llama-2-7b-chat-hf",
# "stop_sequences": '\"sequence1\",\"sequence2\"',
# "repetition_penalty": 1.0,
# "top_k": 50,
# "top_p": 1.0
},
)
for chunk in llm.stream("Why should I use open source models?"):
print(chunk, end="", flush=True)
API Reference:
SambaStudio
SambaStudio allows you to train, run batch inference jobs, and deploy online inference endpoints to run open source models that you fine tuned yourself.
A SambaStudio environment is required to deploy a model. Get more information at sambanova.ai/products/enterprise-ai-platform-sambanova-suite
The sseclient-py package is required to run streaming predictions
%pip install --quiet sseclient-py==1.8.0
Register your environment variables:
import os
sambastudio_base_url = "<Your SambaStudio environment URL>"
# sambastudio_base_uri = "<Your SambaStudio endpoint base URI>" # optional, "api/predict/nlp" set as default
sambastudio_project_id = "<Your SambaStudio project id>"
sambastudio_endpoint_id = "<Your SambaStudio endpoint id>"
sambastudio_api_key = "<Your SambaStudio endpoint API key>"
# Set the environment variables
os.environ["SAMBASTUDIO_BASE_URL"] = sambastudio_base_url
# os.environ["SAMBASTUDIO_BASE_URI"] = sambastudio_base_uri
os.environ["SAMBASTUDIO_PROJECT_ID"] = sambastudio_project_id
os.environ["SAMBASTUDIO_ENDPOINT_ID"] = sambastudio_endpoint_id
os.environ["SAMBASTUDIO_API_KEY"] = sambastudio_api_key
Call SambaStudio models directly from LangChain!
from langchain_community.llms.sambanova import SambaStudio
llm = SambaStudio(
streaming=False,
model_kwargs={
"do_sample": True,
"max_tokens_to_generate": 1000,
"temperature": 0.01,
# "repetition_penalty": 1.0,
# "top_k": 50,
# "top_logprobs": 0,
# "top_p": 1.0
},
)
print(llm.invoke("Why should I use open source models?"))
API Reference:
# Streaming response
from langchain_community.llms.sambanova import SambaStudio
llm = SambaStudio(
streaming=True,
model_kwargs={
"do_sample": True,
"max_tokens_to_generate": 1000,
"temperature": 0.01,
# "repetition_penalty": 1.0,
# "top_k": 50,
# "top_logprobs": 0,
# "top_p": 1.0
},
)
for chunk in llm.stream("Why should I use open source models?"):
print(chunk, end="", flush=True)